Logic-Locking schemes and side channel attacks resilience

RIADI Nassim, PhD student

Thesis Director : Pascal Benoit

Thesis Supervisors : Florent Bruguier, Marie-Lise Flottes, Sophie Dupuis

- → Logic Locking
- → SCA on Logic Locking
- → Perspectives

Motivations

Logic Locking

Globalization of the IC production flow

- Threats
 - IP piracy
 - Counterfeiting
 - Overproduction
 - Reverse engineering
 - Hardware Trojans

Threat models at different stages of IC production flow [1]

=> Development of solutions for the IP protection

[1] H. M. Kamali, K. Z. Azar, F. Farahmandi, et M. Tehranipoor, « Advances in Logic Locking: Past, Present, and Prospects », p. 39.

Logic Locking

DFTr Solutions

DFTr (Design For Trust) e.g

- Camouflaging [2]
- Split-manufacturing
- Logic Locking

Threat level	Camouflaging	Split manufacturing	Logic Locking
Design team	No	No	Yes
Untrusted Foundry	No	Yes	Yes
End-user	Yes	No	Yes

Camouflaging (NAND, NOR) [2]

Split-manufacturing

 [2] M. Yasin, J. Rajendran, et O. Sinanoglu, Trustworthy Hardware Design: Combinational Logic Locking Techniques.
Cham: Springer International Publishing, 2020. doi: <u>10.1007/978-3-030-15334-2</u>.

The Logic Locking is a DFTr technique which consists in locking the correct behaviour of the circuit with a secret key. $L(i, ks) = F(i), \forall i \in I$

- F: Boolean function
- L: Locked boolean function
- Ks: Secret key

Evaluation Metrics :

- Output Corruptibility :

Design flow with Logic Locking

Logic Locking

First Logic Locking Techniques (2008-2015)

- Insertion algorithms
 - RLL (Random Logic Locking) introduced by EPIC
 - FLL (Fault Logic Locking) to maximize output corruption
 - SLL (Strong Logic Locking) a response to the first LL attack
- Key « Gates »
 - XOR/XNOR
 - MUX's
 - LUT's

Different entities insertion

Attack and Threat Model

Attack on LL scheme → Retrieve the locking key

- The threat model
 - Functional IC and Locked netlist → Oracle Guided Attacks
- The first attack (Oracle Guided attack)
 - Sensitization attack [3]: Observe key bits on primary outputs
- The first counter-measure
 - Strong Logic Locking

[3] J. Rajendran, Y. Pino, O. Sinanoglu and R. Karri, "Security analysis of logic obfuscation," *DAC Design Automation Conference 2012*, San Francisco, CA, USA, 2012, pp. 83-89, doi: 10.1145/2228360.2228377

- Subramanyan et al [5]
- The attack flow (iterative process)
 - Construct Mitter circuit
 - Find Distinguising Input Patterns
 - Refine key resarch Space

[5] P. Subramanyan, S. Ray and S. Malik, "Evaluating the security of logic encryption algorithms," *2015 IEEE International Symposium on Hardware Oriented Security and Trust (HOST),* Washington, DC, USA, 2015, pp. 137-143, doi: 10.1109/HST.2015.7140252.

abc	Y	кÜ	K1	k2	кЗ	K4	K5	K6	K/	Incorrect keys identifed
000	0	1	1	1	1	0	0	0	1	
001	0	0	1	1	1	0	1	0	1	
010	0	1	1	1	1	1	1	0	1	Iter 3 : other keys
011	1	1	1	1	1	0	1	1	1	
100	0	1	1	1	1	1	1	0	1	
101	1	1	1	1	1	1	1	1	0	
110	1	1	1	0	1	1	1	1	1	lter 1 : k2
111	1	1	0	1	1	1	1	1	1	lter 2 : k1

The point function LL (e.g. SAR-Lock)

- Weak output corruption ->
 - Strong SAT resilience 🙂
 - Black box usage 😕
 - Removal attack : Remove protection structure 😕

The New LL Era

Ι	0	k0	k1	k2	k3	k4	k5	k6	k7
000	0	1	0	0	0	0	0	0	0
001	0	0	1	0	0	0	0	0	0
010	0	0	0	1	0	0	0	0	0
011	1	1	1	1	0	1	1	1	1
100	0	0	0	0	0	1	0	0	0
101	1	1	1	1	1	1	0	1	1
110	1	1	1	1	1	1	1	1	1
111	1	1	1	1	1	1	1	1	0

SAR-LOCK (K=110)

Logic Locking

The New LL Era

The Corrcupt And Correct (CAC) LL (e.g. SFLL-hd)

- Functionality Stripped Circuit
- Introduction of h parameter
 - More output corruption 🙂
 - Less but still strong SAT-resilience 🙂
 - Good compromise between SAT and black-box resilience ⁽²⁾
 - Removal attack can not be applicable ⁽²⁾
- Emergence of new types of attacks 😕
 - ML-based attacks
 - Scheme specified attacks

IN	Yfs	k0	k1	k2	k3	k4	k5	k6	k7	Y
000	0	0	1	1	0	1	0	0	0	0
001	0	1	0	0	1	0	1	0	0	0
010	1	0	1	1	0	1	1	0	1	0
011	1	1	0	0	1	1	1	1	0	1
100	1	0	1	1	1	1	0	0	1	0
101	1	1	0	1	1	0	1	1	0	1
110	1	1	1	0	1	0	1	1	0	1
111	0	0	0	0	1	0	1	1	0	1

SFLL-HD (K=110, h=1)

→ Logic Locking

SCA on Logic Locking

→ Perspectives

What about Side Channel Attacks on pre-SAT LL schemes?

SCA on Logic Locking

DPA attacks were realised against (RLL, FLL, and SLL) by [6] :

- Threat Model
 - **Functionnal IC**
 - Locked Netlist
- Iterative attack framework

 - Division of the netlist into logic cones The decision function infered according to the PO's
 - The DoM on every subkey
- Simulated attack results
 - 60% of key-bits was resolved for circuits locked with 32 bits 45% for circuits locked with 64 bits

 - Key aliasing induces ghost keys (High DoM for wrong keys)
 - Simulated power traces
 - Limitation on processing time

[6] A. Sengupta, B. Mazumdar, M. Yasin, et O. Sinanoglu, « Logic Locking With Provable Security Against Power Analysis Attacks », IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 39, nº 4, p. 766-778, avr. 2020, doi: 10.1109/TCAD.2019.2897699

Name of cone	# key bits	List of key bits	Resolved?	# of key bits resolved
PO0	1	0	N	0
PO1	1	1	N	0
PO2	6	2,3,4,5,8,9	N	0
PO3	7	10,11,12,16,17,18,19	Y	7
PO5	8	6,7,13,14,15,29,30,31	Y	15
PO4	9	20,21,22,23,24,25,26,27,28	Y	24

Power analysis attacks on SFLL-HD by [6]

- **Threat Model**
 - **Functionnal IC**
 - Locked Netlist
- Attack framework
 - The decision function is the primpary output bit of the circuit (Y)
 - The DoM is calculated
- Attack results : DPA failed

 - The PO Y if controlled from all key bits \rightarrow brute force attack The corruption on Y for a few patterns \rightarrow not significant to distinguish DoM values

_

_

Proposed Strategy

The Threat Model

- Functionnal IC (oracle) Locked Netlist -

The attack framework

- -
- The attack point will be the restore unit Divide and Conquer Methodology can be applied on the key The decision function will be the output of the sub-comparator
- -

Current Work

Power Traces Recording on the LIRMM/CNFM SCA plateform

Setup :

- Circuits : ISCAS circuits locked with SFLL-HD
- 1002 samples 2 clock cycles (update of data only on the first) Artix-7 FPGA
- -
- Key stored on a register

Current Work

Attack of c432 with SFLL-HD (h=0)

- Up to 200k traces
- DPA, CPA, MIA and template attacks No satisfiying results

The Post-SAT schemes are really resilient against side channel attacks?

Current Work

18

Leackage testing on DES circuit locked

- Leackage testing with Welch's T-test 50k traces with fixed correct key 50k traces with variable random keys The same input vectors were used

$$t = \frac{\overline{X1} - \overline{X2}}{\sqrt{\frac{S1^2}{N1} + \frac{S2^2}{N2}}}$$

Multiple DES power traces

- → Logic Locking
- → SCA on Logic Locking

➔ Perspectives

Futur Work	Perspectives

- ➔ Analysis of T-test Results
- → Identifiying the leackage sources

➔ Conduct the same leackage testing on other circuits with the same scheme

→ DPA, CPA, MIA ...

Futur Work	Perspectives

➔ Simulation based leackage testing and SCA attacks (Cadence Joules, 28nm ST-FDSOI)

→ Side Channel Attacks against other advanced LL schemes

→ State of the art of other levels LL (RTL, Transistor, Layout)

→ LL schemes with SCA resilience

Thank you all for listening

The SAFEST project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952252.

