
#BHUSA @BlackHatEvents

Glitched on Earth by Humans:
A Black-Box Security Evaluation of the SpaceX

Starlink User Terminal

Lennert Wouters

@LennertWo

COSIC

Starlink 101

Laser link

Lower Earth Orbit (LEO)

Space

Earth

User Terminal (UT) Gateway

Internet

Satellite

2

This talk

Source: u/darkpenguin22

Source: SpaceX

Source: SpaceX

3

Teardowns

youtube.com/c/KenKeiter @kenkeiteryoutube.com/c/MikeOnSpace @mikeonspace youtube.com/c/Thesignalpath @TheSignalPath

youtube.com/c/ColinOFlynn @colinoflynn

danmurray.net
@DanJMurray

4olegkutkov.me @olegkutkov

Hardware revisions

Circular UT Square UT High Performance UT

• 50 x 30 cm (19″ x 12″)

• Residential and RV

• rev3_proto0

• rev3_proto1

• rev3_proto2

• rev4_proto1

• mini1_

• 57 x 51 cm (22″ x 20″)

• Business and Maritime

• hp1_proto0

• hp1_proto1

• 59 cm (23,23″) diameter

• Residential

• rev1_pre_production

• rev1_production

• rev1_proto1/2/3

• rev2_proto0/1/3

• rev2_proto2 (SoC cut 3)

• rev2_proto4 (SoC cut 4)

5This talk (but attack should apply to all UT hardware)

Transceiver

• External phased array

• transceiver_rev2p0/5

• transceiver_rev2p0/5_cut4

ethernet + power motors UART

Accessible connectors on V2*

UT RXUT TX

JST BM10B-ZPDSS-TF(LF)(SN) JST BM05B-ZESS-TBT(LF)(SN)

6
*V1 hardware had an extra connector, V3 does
not have easily accessible connectors

UART – U-Boot

7

(Newer firmware no longer uses this version)

U-Boot does not accept serial input
(on non-development/fused hardware)

8

UART – Login Prompt

Clock generation59 cm (23,23″)

9

GPS receiver

STM STA8089 GLLBLU

GPS

clockSoC

POE

PCB overview

• (A) Digital BeamFormer (DBF)

• STM GLLBSUABBBA

• Codename: SHIRAZ

• NEW: BAMBOO

• (B) Front-End Module (FEM)

• Codename: PULSAR(AD)

• V2 hardware and up:

• 1 DBF → 16 FEMs

10

RF Components

A

B

11

Siliconpr0n

Thanks to John McMaster!
@johndmcmaster

siliconpr0n.org/archive/doku.php?id=mcmaster:spacex:gllbsuabbba-shiraz id=mcmaster:spacex:gea-aa12-109d-tg02-pulsarad

• (A) System-on-Chip

• Custom quad-core ARM Cortex-A53

• ST Microelectronics

• GLLCCOCA6BF (cut 3?)

• GLLCCODA6BF (cut 4?)

• Codename: CATSON

• (B) Secure Element

• STM STSAFE-A110

• (C) 4GB eMMC

• (D) 2 x 4Gbit DDR3

A

CD

D
12

B

SoC

• through substrate image

• GLLCCOCA6BF (cut 3?)

• Thorlabs NIR camera

• Mitutoyo NIR objective 50x

• Can help narrow down

interesting locations for some

physical attacks

• Full resolution version is

available on siliconpr0n.org!

13

4 CPU cores

Identifying eMMC test points

14

CMD

CLK

D0

SD card reader

TXS0202EVM
Level shifter

15

Reading eMMC in-circuit

What I did What I recommend

Low Voltage eMMC Adapter
by

1V8

eMMC chip-off

• Hot air to remove the eMMC from the board

• “eMMC reballing jig” and solder paste

• eMMC adapter

16

MOORC eMMC socket

Extracting the eMMC dump

• Split the dump into:

• TF-A Bootstages: Firmware Image Packages

• unpack with TF-A fiptool

• Flattened uImage Tree (FIT, custom SXECC format)

• unpack with U-Boot dumpimage

• SpaceX Runtime (dm-verity)

• SpaceX Calibration (dm-verity)

• SpaceX EDR (LUKS)

• SpaceX dish config (LUKS)

• LUKS keys are stored in eFuses

17

U-Boot GPL sources: spacex_catson_boot.h

Unpacking the FIT

• Binwalk and dumpimage failed to extract the FIT

• Custom format (SXECC magic)

• U-Boot GPL sources: https://github.com/SpaceExplorationTechnologies

• Each 255-byte block of data contains 32-bytes of error correcting codes

• Full format explained here:

• esat.kuleuven.be/cosic/blog/dumping-and-extracting-the-spacex-starlink-user-terminal-firmware

• After stripping the ECC once you can use the included unecc binary:

chroot . ./qemu-aarch64-static ./usr/bin/unecc -c < infile > outfile

18

https://github.com/SpaceExplorationTechnologies

Temperature and RF channels

19

Webpages

20

21

Development geofences

Obtaining root

22

Fault injection

✓ Flip-chip packaging exposes die backside

• Laser Fault Injection, Body Bias Injection, Electromagnetic Fault Injection

x PCB is too big for our automatic XYZ positioning equipment

• Likely cumbersome to do on a roof...

x No development kits

• Differential clock input

• (But PLL?)

• Reset line

• Voltage Fault Injection

23

Crowbar VFI

24

Target processor

decoupling
capacitors

Crowbar VFI: Challenges

• Locate core voltage

• No schematic and no datasheet → DMM and educated guessing

• Determine which decoupling capacitors to remove

• None? Some? All?

• Glitch MOSFET selection

• RDS(on) / drain current / gate threshold V / rise & fall time / turn on & off delay time

• Finding a suitable trigger signal

• Time reference

• Determining glitch parameters

25

Crowbar VFI

• NewAE ChipWhisperer-Lite (~ $250)

• Glitch port is connected to the SoC core voltage

• Momentarily shorts core voltage to GND

• Core voltage:~1V, generated by TI TPS56C230

• All decoupling capacitors untouched at this point!

• Oscilloscope triggers on serial data

• Trigger output is input to the ChipWhisperer-Lite

• Glitch parameters controlled from Python

• Offset from trigger point

• Glitch width

26

Example output

27

Results

✓ The Proof-of-Concept works

✓ Was reproduced by the SpaceX PSIRT

✓ Easy to produce (undesirable) faults

✓ A fully booted SoC is already being pushed to its limits

x Slow: 1 attempt every 12 seconds (one per boot)

x Low success rate: many hours for one good attempt

x Unreliable: successful glitch often also results in other errors

28

STM/SpaceX ARM TFA-A

29

• In theory everything outside of the SoC should be considered untrusted

• ROTPK and Security state fuses are blown during manufacturing

• It should be impossible to revert a blown fuse

• Care must be taken when blowing additional fuses

• Security state fuses enable/disable debugging access

STM/SpaceX ARM TFA-A

30

1. BL1 loads BL2 certificate from eMMC

2. BL1 verifies the certificate’s signature

3. BL1 loads the BL2 firmware from eMMC

4. BL1 verifies that SHA512(BL2) matches the hash contained in the certificate

Challenges

• We do not have access to documentation or open/unfused samples

• Commonly: develop the attack on a development board first

• We can’t run our own test program

• Commonly: nested loop counter with observable output and GPIO pin for triggering

• We can’t dump and reverse engineer the ROM bootloader

• (We will dump it later ;))

• We don’t really know what operation is happening when

• But we do know the later stages are based on TF-A

31

Tricks of the trade

• Boot with a second stage that is invalid and observe differences

• Invalid certificate signature

• Invalid bootloader hash in the certificate

• Valid certificate with a bootloader that does not match the certificate

• Attempt to glitch a valid certificate into a signature verification failure!

• Allows to determine a suitable range of glitch widths

• Side-channels!

• Power consumption, EM emanations, timing differences, temperature, …

32

Tricks of the trade

• Hardware and the software executing on it can be susceptible to glitching

in multiple unexpected ways!

• Your (and the developer’s) mental model is likely incorrect

• Try to be exhaustive and do not simply try to glitch at the end of an operation

33

34

BL1 Glitch setup

Normal boot

35

UART

x 10e6 samples

EM side-channel

Signature verification

“INFO: Image id=6 loaded at address 0x30209000, size = 0x90”
→ Certificate has been loaded

Glitched boot

36

UART

x 10e6 samples

EM side-channel

Signature verification skipped?!

“INFO: cert_nv_ctr : 1”
→ Signature verified and the rollback counter is 1

ROM Bootloader (BL1)

• Mapped at 0x30000000 and readable from BL2!

• BSEC eFuses mapped at 0x22400000 (shadow registers)

• Emulated the ROM bootloader using Unicorn Engine

• Fuzzed using AFL++ in Unicorn mode

• No bugs found so far…

• Simulated instruction skip faults in Unicorn Engine

• Single instruction skip faults do not result in the observed behavior!

• Code has some control flow checks and redundant operations

• Skipping two consecutive instructions does result in the observed behavior

• (Actual fault model is likely to be different)

37

github.com/AFLplusplus/AFLplusplus

github.com/unicorn-engine/unicorn

BL1 glitch detection example

38

INFO: BL1: Get the image descriptor
INFO: BL1: Loading BL2
INFO: Loading image id=6 at address 0x30209000
INFO: Skip reserving region [base = 0x30209000, size = 0x90]
INFO: Image id=6 loaded at address 0x30209000, size = 0x90

INFO: cert_nv_ctr : 1
INFO: plat_nv_ctr : 0
INFO: Loading image id=1 at address 0x30209000
INFO: Image id=1 loaded at address 0x30209000, size = 0xf178

NOTICE: BL1: Booting BL2
NOTICE: plat_error_handler err = -80
INFO: Authentication error !!!

Certificate has been loaded
Contains invalid signature but
valid digest of BL2 firmware

Signature verification succeeded!
Loaded BL2 firmware and
verified hash digest

Final control flow check detects
our glitch!

BL1 UART output

BL1 glitch detection example

39

1 2

3

Called right before passing control to BL2

• Decoupling capacitors

are needed for later boot

stages

• Experimented with:

• N-channel MOSFETS

• P-channel MOSFETS

• High/Low side switching

• Gate voltage

• MOSFET drivers

• Capacitor sizes

• Timing

40

Enabling decoupling capacitors

Researcher access

• Demonstrated a full attack in the lab!

• But the setup is still too bulky to be used in a practical setting (e.g., on a roof)

• SpaceX offered an easy way out: SSH access through a Yubikey

• But I was already too far down the rabbit hole …

41

• Replacing lab

equipment with

low-cost off-the-

shelf components

• RPI Pico replaces

oscilloscope and

ChipWhisperer

• Works

• But still messy…

42

Creating a mobile setup

• Scanner @ 600 DPI

• Draw board outline at real size in Inkscape

• Load in KiCad and use in the edgecuts layer

43

PCB design

Modchip

44

RP2040 @250MHz
PIO for triggering
and glitch generation

2 channel MOSFET driver

Glitch/crowbar MOSFET

Decoupling MOSFETs

Castellated holes to mount to the UT PCB

6 cm
2,36″

0,8 mm
0,0315 ″

Available on GitHub!

45

12V for MOSFET drivers
and standalone power

Core voltage regulator
enable pin
(for power cycling)

1V8 for
level shifter

Installed modchip

46

SpaceX strikes back

• I did a firmware update…

• Previously unused eFuse is now blown and disables UART output

• Modchip was designed to trigger on UART

47

Adapt

48

BEFORE

AFTER

Overcome

• Trigger on eMMC D0 instead of UART

• Modchip could be easily adapted

• Disconnect UT UART TX

• Connect to eMMC D0

• Update glitch parameters from Python

• Alternative: new PCB revision

49

Network exploration

• All interesting communication uses mutually authenticated TLS (STSAFE)

• Added STSAFE support to the tlslite-ng TLS implementation

• Python script to download the latest firmware updates

• Mostly IPv6 2620:134:b000::1:0:0

• Open ports (nmap): 8001-8012, 9000, 9003, 9005, 9010, 9011

50

Firmware update archive

What’s next?

• You can make your own modchip and use it to:

• Further explore the network infrastructure

• Not accessible as a normal user

• Integrate the STSAFE with GRPC

• Interact with the Digital BeamFormers and update their firmware

• Repurpose your terminal?

51

Conclusion

• We can bypass secure boot using voltage fault injection in BL1

• Quad core Cortex-A53 in a black box scenario

• no documentation, no open development kits

• Enabling and disabling of decoupling capacitors

• Fault injection countermeasures are only as good as the fault model that was used

• This is a well-designed product (from a security standpoint)

• No obvious (to me) low-hanging fruit

• In contrast to many other devices getting a root shell was challenging

• And a root shell does not immediately lead to an attack that scales

• SpaceX PSIRT was very responsive and helpful!

• https://bugcrowd.com/spacex vulnerabilityreporting@spacex.com

• https://api.starlink.com/public-files/StarlinkWelcomesSecurityResearchersBringOnTheBugs.pdf
52

https://bugcrowd.com/spacex
mailto:vulnerabilityreporting@spacex.com
https://api.starlink.com/public-files/StarlinkWelcomesSecurityResearchersBringOnTheBugs.pdf

53

Demo!

COSIC

@LennertWo

lennert.wouters@esat.kuleuven.be

github.com/KULeuven-COSIC/Starlink-FI

63

	Default Section
	Slide 1
	Slide 2: Starlink 101
	Slide 3
	Slide 4: Teardowns
	Slide 5: Hardware revisions
	Slide 6: Accessible connectors on V2*
	Slide 7: UART – U-Boot
	Slide 8
	Slide 9: PCB overview
	Slide 10
	Slide 11
	Slide 12
	Slide 13: SoC
	Slide 14: Identifying eMMC test points
	Slide 15
	Slide 16: eMMC chip-off
	Slide 17: Extracting the eMMC dump
	Slide 18: Unpacking the FIT
	Slide 19: Temperature and RF channels
	Slide 20: Webpages
	Slide 21
	Slide 22: Obtaining root
	Slide 23: Fault injection
	Slide 24: Crowbar VFI
	Slide 25: Crowbar VFI: Challenges
	Slide 26: Crowbar VFI
	Slide 27: Example output
	Slide 28: Results
	Slide 29: STM/SpaceX ARM TFA-A
	Slide 30: STM/SpaceX ARM TFA-A
	Slide 31: Challenges
	Slide 32: Tricks of the trade
	Slide 33: Tricks of the trade
	Slide 34
	Slide 35: Normal boot
	Slide 36: Glitched boot
	Slide 37: ROM Bootloader (BL1)
	Slide 38: BL1 glitch detection example
	Slide 39: BL1 glitch detection example
	Slide 40
	Slide 41: Researcher access
	Slide 42
	Slide 43
	Slide 44: Modchip
	Slide 45: Installed modchip
	Slide 46
	Slide 47: SpaceX strikes back
	Slide 48: Adapt
	Slide 49: Overcome
	Slide 50: Network exploration
	Slide 51: What’s next?
	Slide 52: Conclusion
	Slide 53: Demo!
	Slide 54
	Slide 63

