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Homomorphic Encryption



omomorphic Encryption

e Enables computation on encrypted data.

data

Enc(data)

Enc( foo(data) )

Dec() gives foo(data) Cloud homomorphically

evaluates foo()
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omomorphic Encryption

e Holy grail of cryptography: Fully homomorphic encryption.
e RSA cryptosystem (1978) is homomorphic...

e with respect to multiplication.

m, =a® (mod n), mp = b® (mod n)

my.mp = a°.b® = (a.b)® (mod n)
(ms.mp)?  (mod n) = ((a.b)®)? (mod n) = a.b

e Paillier (1999) cryptosystem is homomorphic with respect to addition.

e A fully homomorphic scheme for both addition and multiplication?
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omomorphic Encryption

e Craig Gentry proposed the first fully homomorphic scheme in 2009.

e Achieved it using a special operation called boostrapping.

Encrypt(z) Encrypt(z)

First image source: https://www.technologyreview.com/technology/homomorphic-encryption/
Second image source: M. Joye, SoK: Fully omomorphic Encryption over the [Discretized] Torus, CHES, 2022.
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omomorphic Encryption

e Homomorphic encryption use cases

e Privacy-preserving machine learning
e Secure computation in cloud
e Financial services, healthcare, government etc.
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omomorphic Encryption

e Homomorphic encryption research

e New schemes with better performance/less complexity/different applications
e 1st generation schemes: First schemes, very inefficient

e 2nd generation schemes: Enables faster integer/fixed-pt arithmetic (e.g., BGV,
CKKS)

e 3rd generation schemes: Enables efficient Boolean algebra (e.g., FHEW)

e Development of homomorphic application/compilers
e Acceleration of HE
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hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022
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hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
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hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

ASIC — COFHEE, F1, ARK, BASALISC, ...
FPGA — HPP, HEAX, Medha, ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022
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hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

Next?
ASIC — COFHEE, F1, ARK, BASALISC, ...
FPGA — HPP, HEAX, Medha,ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022
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hallenges in accelerating Homomorphic Encryption

Why do we need HW acceleration?

1. Computationally intensive:
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hallenges in accelerating Homomorphic Encryption

Why do we need HW acceleration?

1. Computationally intensive: 100,000 plain computation
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hallenges in accelerating Homomorphic Encryption

500
NN evaluations
400 t | 1

350 . t . . — - -t
\ Logistic regression

Size of coefficients
N
(3.
o

200 | Function approximations |

150 1 ; 1

100 Linear regression t - -t
50

00" PQC
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of coefficients in polynomial

n Ahmet Can Mert — IAIK — Graz University of Technology



hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic
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hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic

3. Memory management

e Ciphertexts could be several MBs
e On-Chip memory is limited
e Off-Chip data transfer is very slow
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hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic < This problem is solved using RNS

3. Memory management

e Ciphertexts could be several MBs
e On-Chip memory is limited
e Off-Chip data transfer is very slow
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pplication of Residue Number System (RNS)

1. Take a modulus @ = Hé_l g; where g; are coprime.

2. Process residues independently (to some extent)

Arithmetic mod gy —>

Arithmetic mod ¢1 —> Chinese

[Arithmetic mod @ : R::;z':j:r Result mod @

(CRT)

Arithmetic mod qr_i—>

Small coefficients and Parallel computation

Ahmet Can Mert — IAIK — Graz University of Technology



arallel computation flow example

After CRTTT ﬁ,After conversion to RNS
mod g9 q1 @ qr—2 éL—1}

| )

L parallel threads
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cheme operations

mod g0 @ @ di2 9 1] Multiplication:

¢ = [Coi' Cli]’ C/ = [Cé," Ci,‘]

L parallel threads Amuie = [do;, di;, do,]
‘ dO,- = Cp; X Cél_
L L | di, = co, X €1, +c1; X ¢,

i

_ /
dr. = c; X Cl,-

Vielo, L—1]
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cheme operations

Relinearization:
L parallel threads

dmult = [dO,'r dl," d2f]

— Coure = [0, €1] Y
| 3
C(/)j' = X:/L:_o1 o, . KSKo,, Vj € [0, L] i

ol = Yo da.KSKy,, Vj € [0, L]
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W design challenge!

{mOd Q9O @ Q9 qr—2 qr-1|

1! Threads need to exchange data.
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W design challenge!

{mOd Q9O @ Q9 qr—2 qr-1|

1! Threads need to exchange data.
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W design challenge!

Thread,

Thread; < > Threads Threads need to exchange data.
R R fJ
Thready
_
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edha: Microcoded Hardware Accelerator for computing on Encrypted Data
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rchitecture of the Homomorphic Processor

Design goals:

e Implementation and verification on real FPGA (Xilinx Alveo U250 card)
e Eliminating off-chip memory communication
e Supporting at least n = 214 with RNS moduli sizes 54/60-bit for RNS-CKKS
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rchitecture of the Homomorphic Processor

Design goals:

e Implementation and verification on real FPGA (Xilinx Alveo U250 card)
e Eliminating off-chip memory communication
e Supporting at least n = 214 with RNS moduli sizes 54/60-bit for RNS-CKKS

Thread — One residue polynomial arthmetic unit (RPAU)

[mod g0 @1 tI\z ar2 qr1|
/ L parallel threads ‘
> |

b _ -

RPAU| |RPAU | |RPAU - - = == - == == - == - -~ RPAU/ |RPAU.
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rchitecture of the Homomorphic Processor

The overall architecture of one RPAU.

M T Reav.All

Memory
Access
Controller

Unified Butterfly
Core-15

IRPAU.Dyadic |
i

=
-

| Memory for KeySwitching-Key-0 l::

e It has two main cores

e 16-butterfly NTT unit
e 4-core Dyadic unit

Unified Butterfly
Core-2

e Memory blocks

' | Unified Butterfly
Core-1

4 Trivium Cores

' | Unified Butterfly
.| Core0 | | [P Core-0

Memory for Residue Polynomial 12|c:(>

Memory for KeySwitching-Key-1
| Memory for Residue Polynomial 0 |c:§
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?

g s e e Y e s R -

NTTqo NTTqy NTTq NTTgp

NTTqo NTTqq NTTq NTTgp
" 5 6 ) 5 e g ity g
006 6

NTTgo NTTqq NTTg NTTg,

o
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?

Ahmet Can Mert — IAIK — Graz University of Technology



rchitecture of the Homomorphic Processor

Why do we use two separate cores?

INTTgo INTTy INTT, INTT,
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?

da, dfl d22 .................... dfl
INTTgo INTT g INTTg, INTTg
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?

da, dfl d22 .................... d2z
INTTgo INTTgy INTT, INTT
S Y s e e T o o
-------- s - i - - - - 2 e e
M-2 X NTTqo NTTq1 NTTq NTTgp } ‘ } ‘
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?

w2 || e o Y 5 A A
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rchitecture of the Homomorphic Processor

Why do we use two separate cores?
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rchitecture of the Homomorphic Processor

o Parallel execution of NTT & dyadic cores for key-switching procedure results in:

40% reduction in cycle!
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ustomized on-chip memory design

Our goal: Implementing homomorphic operations using only on-chip memory.
We analyzed the peak memory requirement of one RPAU.

Example: For n = 21% with 10 RNS bases of 54/60-bits, each RPAU needs to store at
least 49 polynomials of size 24 for residue polynomials and keys.

e On-chip BRAMs or URAMs alone cannot fulfill the requirements...
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ustomized on-chip memory design

Our goal: Implementing homomorphic operations using only on-chip memory.
We analyzed the peak memory requirement of one RPAU.

Example: For n = 21% with 10 RNS bases of 54/60-bits, each RPAU needs to store at
least 49 polynomials of size 24 for residue polynomials and keys.

e On-chip BRAMs or URAMs alone cannot fulfill the requirements...
Optimizations to reduce on-chip memory requirements

1. On the fly evaluation key generation
2. Utilizing left-over bits in BRAM/URAM
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ustomized on-chip memory design

1. On-the-fly evaluation key generation
KSKO 9%

KSKp <+ PRNG(seeds)
KSK; < f(KSKo, s)
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ustomized on-chip memory design

1. On-the-fly evaluation key generation

KSKO )
KSKp <+ PRNG(seeds) v v
KSK1 « f(KSKo, s)
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ustomized on-chip memory design

]

Y v

1. On-the-fly evaluation key generation PRNGl)KSKO [ f sk

KSKO 9%
KSKp <+ PRNG(seeds)

A 4
KSK1 + f(KSKo, s) | |->
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ustomized on-chip memory design

2. Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits
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ustomized on-chip memory design

2. Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits

We created a virtual memory to utilize left-over bits in BRAM/URAM.

e Example: 54-bit coefficient storage in URAM

54 54 54

!

54 18 36 18 54
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lacement-friendly Layout

Each RNS base is implemented by one RPAU.

e Key-switching operation requires polynomials to be exchanged between RPAUs.

Fmd Qo a1 ¢ qr-2 qr1|

< L parallel threads) ) ‘
[ [ > > RNS

Placing/Interconnecting RPAUs is a huge engineering challenge!
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lacement-friendly Layout
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lacement-friendly Layout

Placing/Interconnecting the RPAUs must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2

SLR3

| RPARS NRPAU#O I

Communicat
Switch

Complicates placement and routing

Many SLR-crossing nets

Achieves very low clock frequency
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lacement-friendly Layout

Placing/Interconnecting the RPAUs must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3 SLRO SLR1 SLR2 SLR3

' RPAN7 || RPAU#6 | it ; | RPAUKTHRPAUG |

| RPARS NRPAU#O I | RPAU#SL-RRAULQ |

Communical Simple

Switch Communication
= Complicates placement and routing = Only neighboring RPAUs are connected
= Many SLR-crossing nets = Data is sent through a chain of RPAUs
= Achieves very low clock frequency = Achieves high clock frequency
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valuation

As a proof of concept, our implementation employs 10 RPAUs and supports two
parameter sets.

o (logy(pQ) = 438, n = 21*) and (log,(p@) = 546, n = 21°)
Resource utilization on Alveo U250 card.

e 1.09M LUTs (55.4%), 3,607 DSPs (29.3%)
e 1,576.5 BRAMs (58.6%), 931 URAMs (72.8%)

H rPAUO
RPAUL
RPAU2

& RPAU3

W reavs

RPAUS

RPAUG

RPAU7

RPAUS

280 1 rPAUp

B platform_i
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valuation Results

End-to-end application benchmark for the logistic regression model proposed by
iDASH2017 competition winners.

e 64x speedup compared to the implementation in SEAL

Comparison with SEAL and HEAX:

80000

70000 X 1 3 4

60000

50000

40000

30000

20000

10000

x2.3

o) \] NS
W2 e

wed™®

Ahmet Can Mert — IAIK — Graz University of Technology



omparison with HW-based HE accelerators in the literature
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Conclusion




onclusion

Accelerators show promising performance results, but ...

e most of them are not proven in silicon
e only few FPGA/GPU works are verified and tested in real HW

e We proposed one of few real hardware accelerators in literature

HW acceleration is not enough to make HE practical, we need better schemes

HW Benchmarking and comparison is challenging.

e Very few open source works.
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