Ty,
Hardware Acceleration Efforts for Homomorphic

Encryption

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

Ahmet Can Mert
2023-06-20

IAIK — Graz University of Technology

utline

1. Homomorphic Encryption
e Challenges in accelerating HE

2. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

Architecture of Homomorphic Processor

Customized on-chip memory design

Placement-friendly Layout

Design Methodology for Flexible Polynomial Degree
Evaluation Results

3. Conclusion

Ahmet Can Mert — IAIK — Graz University of Technology

Homomorphic Encryption

omomorphic Encryption

e Enables computation on encrypted data.

data

Enc(data)

Enc(foo(data))

Dec() gives foo(data) Cloud homomorphically

evaluates foo()

Ahmet Can Mert — IAIK — Graz University of Technology

omomorphic Encryption

e Holy grail of cryptography: Fully homomorphic encryption.
e RSA cryptosystem (1978) is homomorphic...

e with respect to multiplication.

m, =a® (mod n), mp = b® (mod n)

my.mp = a°.b® = (a.b)® (mod n)
(ms.mp)? (mod n) = ((a.b)®)? (mod n) = a.b

e Paillier (1999) cryptosystem is homomorphic with respect to addition.

e A fully homomorphic scheme for both addition and multiplication?

Ahmet Can Mert — IAIK — Graz University of Technology

omomorphic Encryption

e Craig Gentry proposed the first fully homomorphic scheme in 2009.

e Achieved it using a special operation called boostrapping.

Encrypt(z) Encrypt(z)

First image source: https://www.technologyreview.com/technology/homomorphic-encryption/
Second image source: M. Joye, SoK: Fully omomorphic Encryption over the [Discretized] Torus, CHES, 2022.

Ahmet Can Mert — IAIK — Graz University of Technology

https://www.technologyreview.com/technology/homomorphic-encryption/

omomorphic Encryption

e Homomorphic encryption use cases

e Privacy-preserving machine learning
e Secure computation in cloud
e Financial services, healthcare, government etc.

Ahmet Can Mert — IAIK — Graz University of Technology

omomorphic Encryption

e Homomorphic encryption research

e New schemes with better performance/less complexity/different applications
e 1st generation schemes: First schemes, very inefficient

e 2nd generation schemes: Enables faster integer/fixed-pt arithmetic (e.g., BGV,
CKKS)

e 3rd generation schemes: Enables efficient Boolean algebra (e.g., FHEW)

e Development of homomorphic application/compilers
e Acceleration of HE

n Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

FPGA — HPP, HEAX, Medha, ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

ASIC — COFHEE, F1, ARK, BASALISC, ...
FPGA — HPP, HEAX, Medha, ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

Next?
ASIC — COFHEE, F1, ARK, BASALISC, ...
FPGA — HPP, HEAX, Medha,ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

e A brief summary of acceleration efforts. Two main tracks:
e Real accelerator prototypes vs. simulation-based modelling of accelerators.

Next?
ASIC — COFHEE, F1, ARK, BASALISC, ...
FPGA — HPP, HEAX, Medha, ReMCA, ...

Software Libraries —— SEAL, OpenFHE, Lattigo, Concrete, ...

[CoFHEE] Mohammed Nabeel et al. CoFHEE: A Co-processor for Fully Homomorphic Encryption Execution. DATE 2023.

[F1] Axel Feldmann et al. F1: A fast and programmable accelerator for fully homomorphic encryption. MICRO 2021.

[BTS] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[BASALISC] Sangpyo Kim et al. BTS: An Accelerator for Bootstrappable Fully Homomorphic Encryption. ISCA 2022.

[HPP] S. S. Roy et al. Fpga-based high-performance parallel architecture for homomorphic computing on encrypted data. HPCA, 2019.
[HEAX] M. Sadegh Riazi et al. HEAX: an architecture for computing on encrypted data. ASPLOS 2020.

[ReMCA] Y. Su et al. Remca: A reconfigurable multi-core architecture for full rns variant of bfv homomorphic evaluation. IEEE TCAS I, 2022

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

Why do we need HW acceleration?

1. Computationally intensive:

n Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

Why do we need HW acceleration?

1. Computationally intensive: 100,000 plain computation

n Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

500
NN evaluations
400 t | 1

350 . t . . — - -t
\ Logistic regression

Size of coefficients
N
(3.
o

200 | Function approximations |

150 1 ; 1

100 Linear regression t - -t
50

00" PQC
0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Number of coefficients in polynomial

n Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic

3. Memory management

e Ciphertexts could be several MBs
e On-Chip memory is limited
e Off-Chip data transfer is very slow

Ahmet Can Mert — IAIK — Graz University of Technology

hallenges in accelerating Homomorphic Encryption

1. Computationally intensive
2. Lots of polynomial arithmetic operations

e Large degree polynomial arithmetic
e Long integer arithmetic < This problem is solved using RNS

3. Memory management

e Ciphertexts could be several MBs
e On-Chip memory is limited
e Off-Chip data transfer is very slow

Ahmet Can Mert — IAIK — Graz University of Technology

pplication of Residue Number System (RNS)

1. Take a modulus @ = Hé_l g; where g; are coprime.

2. Process residues independently (to some extent)

Arithmetic mod gy —>

Arithmetic mod ¢1 —> Chinese

[Arithmetic mod @ : R::;z':j:r Result mod @

(CRT)

Arithmetic mod qr_i—>

Small coefficients and Parallel computation

Ahmet Can Mert — IAIK — Graz University of Technology

arallel computation flow example

After CRTTT ﬁ,After conversion to RNS
mod g9 q1 @ qr—2 éL—1}

|)

L parallel threads

Ahmet Can Mert — IAIK — Graz University of Technology

cheme operations

mod g0 @ @ di2 9 1] Multiplication:

¢ = [Coi' Cli]’ C/ = [Cé," Ci,‘]

L parallel threads Amuie = [do;, di;, do,]
‘ dO,- = Cp; X Cél_
L L | di, = co, X €1, +c1; X ¢,

i

_ /
dr. = c; X Cl,-

Vielo, L—1]

Ahmet Can Mert — IAIK — Graz University of Technology

cheme operations

Relinearization:
L parallel threads

dmult = [dO,'r dl," d2f]

— Coure = [0, €1] Y
| 3
C(/)j' = X:/L:_o1 o, . KSKo,, Vj € [0, L] i

ol = Yo da.KSKy,, Vj € [0, L]

Ahmet Can Mert — IAIK — Graz University of Technology

W design challenge!

{mOd Q9O @ Q9 qr—2 qr-1|

1! Threads need to exchange data.

Ahmet Can Mert — IAIK — Graz University of Technology

W design challenge!

{mOd Q9O @ Q9 qr—2 qr-1|

1! Threads need to exchange data.

Ahmet Can Mert — IAIK — Graz University of Technology

W design challenge!

Thread,

Thread; < > Threads Threads need to exchange data.
R R fJ
Thready
_

Ahmet Can Mert — IAIK — Graz University of Technology

Medha: Microcoded Hardware
Accelerator for computing on
Encrypted Data

edha: Microcoded Hardware Accelerator for computing on Encrypted Data

Medha: Microcoded Hardware Accelerator for
computing on Encrypted Data
Ahmet Can Mert!, Aikata!, Sunmin Kwon?, Youngsam Shin?, Donghoon
Yoo?, Yongwoo Lee? and Sujoy Sinha Roy!
! TAIK, Graz University of Technology, Austria,
{sujoy.sinharoy, ahmet .mert,aikata}@iaik.tugraz.at

2 Samsung Advanced Institute of Technology, Suwon, Republic of Korea,

{sunmin7.kwon, youngsam.shin, say.yoo, yw0803.lee}@samsung. com

Ahmet Can Mert — IAIK — Graz University of Technology

utline

1. Motivation and Background

e Challenges in accelerating HE
e RNS-HEAAN

2. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

Architecture of Homomorphic Processor
e Customized on-chip memory design
e Placement-friendly Layout

Design Methodology for Flexible Polynomial Degree
Evaluation Results

3. Conclusion

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Design goals:

e Implementation and verification on real FPGA (Xilinx Alveo U250 card)
e Eliminating off-chip memory communication
e Supporting at least n = 214 with RNS moduli sizes 54/60-bit for RNS-CKKS

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Design goals:

e Implementation and verification on real FPGA (Xilinx Alveo U250 card)
e Eliminating off-chip memory communication
e Supporting at least n = 214 with RNS moduli sizes 54/60-bit for RNS-CKKS

Thread — One residue polynomial arthmetic unit (RPAU)

[mod g0 @1 tI\z ar2 qr1|
/ L parallel threads ‘
> |

b _ -

RPAU| |RPAU | |RPAU - - = == - == == - == - -~ RPAU/ |RPAU.

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

The overall architecture of one RPAU.

M T Reav.All

Memory
Access
Controller

Unified Butterfly
Core-15

IRPAU.Dyadic |
i

=
-

| Memory for KeySwitching-Key-0 l::

e It has two main cores

e 16-butterfly NTT unit
e 4-core Dyadic unit

Unified Butterfly
Core-2

e Memory blocks

' | Unified Butterfly
Core-1

4 Trivium Cores

' | Unified Butterfly
.| Core0 | | [P Core-0

Memory for Residue Polynomial 12|c:(>

Memory for KeySwitching-Key-1
| Memory for Residue Polynomial 0 |c:§

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

g s e e Y e s R -

NTTqo NTTqy NTTq NTTgp

NTTqo NTTqq NTTq NTTgp
" 5 6) 5 e g ity g
006 6

NTTgo NTTqq NTTg NTTg,

o

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

INTTgo INTTy INTT, INTT,

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

da, dfl d22 dfl
INTTgo INTT g INTTg, INTTg

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

da, dfl d22 d2z
INTTgo INTTgy INTT, INTT
S Y s e e T o o
-------- s - i - - - - 2 e e
M-2 X NTTqo NTTq1 NTTq NTTgp } ‘ } ‘

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

w2 || e o Y 5 A A

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

Why do we use two separate cores?

Ahmet Can Mert — IAIK — Graz University of Technology

rchitecture of the Homomorphic Processor

o Parallel execution of NTT & dyadic cores for key-switching procedure results in:

40% reduction in cycle!

Ahmet Can Mert — IAIK — Graz University of Technology

utline

1. Motivation and Background

e Challenges in accelerating HE
e RNS-HEAAN

2. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

e Architecture of Homomorphic Processor

e Customized on-chip memory design

e Placement-friendly Layout

e Design Methodology for Flexible Polynomial Degree
e Evaluation Results

3. Conclusion

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

Our goal: Implementing homomorphic operations using only on-chip memory.
We analyzed the peak memory requirement of one RPAU.

Example: For n = 21% with 10 RNS bases of 54/60-bits, each RPAU needs to store at
least 49 polynomials of size 24 for residue polynomials and keys.

e On-chip BRAMs or URAMs alone cannot fulfill the requirements...

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

Our goal: Implementing homomorphic operations using only on-chip memory.
We analyzed the peak memory requirement of one RPAU.

Example: For n = 21% with 10 RNS bases of 54/60-bits, each RPAU needs to store at
least 49 polynomials of size 24 for residue polynomials and keys.

e On-chip BRAMs or URAMs alone cannot fulfill the requirements...
Optimizations to reduce on-chip memory requirements

1. On the fly evaluation key generation
2. Utilizing left-over bits in BRAM/URAM

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

1. On-the-fly evaluation key generation
KSKO 9%

KSKp <+ PRNG(seeds)
KSK; < f(KSKo, s)

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

1. On-the-fly evaluation key generation

KSKO)
KSKp <+ PRNG(seeds) v v
KSK1 « f(KSKo, s)

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

]

Y v

1. On-the-fly evaluation key generation PRNGl)KSKO [f sk

KSKO 9%
KSKp <+ PRNG(seeds)

A 4
KSK1 + f(KSKo, s) | |->

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

2. Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits

Ahmet Can Mert — IAIK — Graz University of Technology

ustomized on-chip memory design

2. Utilizing left-over bits in BRAM/URAM

e One URAM address can store 72-bits
e One BRAM address can store 18/36/72-bits

We created a virtual memory to utilize left-over bits in BRAM/URAM.

e Example: 54-bit coefficient storage in URAM

54 54 54

!

54 18 36 18 54

Ahmet Can Mert — IAIK — Graz University of Technology

utline

1. Motivation and Background

e Challenges in accelerating HE
e RNS-HEAAN

2. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

e Architecture of Homomorphic Processor

e Customized on-chip memory design

e Placement-friendly Layout

e Design Methodology for Flexible Polynomial Degree
e Evaluation Results

3. Conclusion

Ahmet Can Mert — IAIK — Graz University of Technology

lacement-friendly Layout

Each RNS base is implemented by one RPAU.

e Key-switching operation requires polynomials to be exchanged between RPAUs.

Fmd Qo a1 ¢ qr-2 qr1|

< L parallel threads)) ‘
[[> > RNS

Placing/Interconnecting RPAUs is a huge engineering challenge!

Ahmet Can Mert — IAIK — Graz University of Technology

lacement-friendly Layout

/ N
DDR(3]
N /

p \
{ ooRlE

\
DOR[0]
N /

AN

AT

N —

{ I

N

Dynamic
Region
SLR3
AN
 asFe] >
Dymamic X e Alveo U250 platform consists of four
Region) { asFRfil > .) , .
. 42 N semi-separated’ SLR regions
<J 3 |7 . .
> . e Two neighboring SLRs are connected
Dynamic Shell e . . .
fegton = s EEN using a limited number of wires.
SLR1 ’:ﬂ‘//)
Dynamic
Region

SLRD

Ahmet Can Mert — IAIK — Graz University of Technology

lacement-friendly Layout

Placing/Interconnecting the RPAUs must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2

SLR3

| RPARS NRPAU#O I

Communicat
Switch

Complicates placement and routing

Many SLR-crossing nets

Achieves very low clock frequency

Ahmet Can Mert — IAIK — Graz University of Technology

lacement-friendly Layout

Placing/Interconnecting the RPAUs must consider SLR-to-SLR connection constraints.

SLRO SLR1 SLR2 SLR3 SLRO SLR1 SLR2 SLR3

' RPAN7 || RPAU#6 | it ; | RPAUKTHRPAUG |

| RPARS NRPAU#O I | RPAU#SL-RRAULQ |

Communical Simple

Switch Communication
= Complicates placement and routing = Only neighboring RPAUs are connected
= Many SLR-crossing nets = Data is sent through a chain of RPAUs
= Achieves very low clock frequency = Achieves high clock frequency

Ahmet Can Mert — IAIK — Graz University of Technology

utline

1. Motivation and Background

e Challenges in accelerating HE
e RNS-HEAAN

2. Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

e Architecture of Homomorphic Processor

e Customized on-chip memory design

e Placement-friendly Layout

e Design Methodology for Flexible Polynomial Degree
e Evaluation Results

3. Conclusion

Ahmet Can Mert — IAIK — Graz University of Technology

valuation

As a proof of concept, our implementation employs 10 RPAUs and supports two
parameter sets.

o (logy(pQ) = 438, n = 21*) and (log,(p@) = 546, n = 21°)
Resource utilization on Alveo U250 card.

e 1.09M LUTs (55.4%), 3,607 DSPs (29.3%)
e 1,576.5 BRAMs (58.6%), 931 URAMs (72.8%)

H rPAUO
RPAUL
RPAU2

& RPAU3

W reavs

RPAUS

RPAUG

RPAU7

RPAUS

280 1 rPAUp

B platform_i

Ahmet Can Mert — IAIK — Graz University of Technology

valuation Results

End-to-end application benchmark for the logistic regression model proposed by
iDASH2017 competition winners.

e 64x speedup compared to the implementation in SEAL

Comparison with SEAL and HEAX:

80000

70000 X 1 3 4

60000

50000

40000

30000

20000

10000

x2.3

o) \] NS
W2 e

wed™®

Ahmet Can Mert — IAIK — Graz University of Technology

omparison with HW-based HE accelerators in the literature

& [F1]
___ - ® [BTS]
10% §occsmcmmmmmmmtommmmmommopmommommomom s S | @ [BASALISC]
——— b | [CraterLake]
£ e il . F— ® [ARK]
n 103 4 1 T
+ oo @ COFHEE
5 Pl @ [ReMCA]
o 102 4 R @ [HPP]
2 b & [HEAWS]
1 1
§ ! I [HEAX]
& 10 4 — @ [Medhal
Lol
1 i
100 L
i
103 104 105 108 107

COST (in US $)

Ahmet Can Mert — IAIK — Graz University of Technology

Conclusion

onclusion

Accelerators show promising performance results, but ...

e most of them are not proven in silicon
e only few FPGA/GPU works are verified and tested in real HW

e We proposed one of few real hardware accelerators in literature

HW acceleration is not enough to make HE practical, we need better schemes

HW Benchmarking and comparison is challenging.

e Very few open source works.

Ahmet Can Mert — IAIK — Graz University of Technology

Ty,
Hardware Acceleration Efforts for Homomorphic

Encryption

Medha: Microcoded Hardware Accelerator for computing on Encrypted Data

Ahmet Can Mert
2023-06-20

IAIK — Graz University of Technology

	Homomorphic Encryption
	Medha: Microcoded Hardware Accelerator for computing on Encrypted Data
	Conclusion

