
Masking Lattice-based Post-quantum
Cryptography

Suparna Kundu

imec-COSIC, KU Leuven

 SAFEST 2023

Side-channel attacks (SCA) exploits implementation
flaws

● Power consumption

● Electromagnetic radiation

● Timing information

Leak sensitive information

2

Masking is a countermeasure of SCA

3

Ma
ske

d

Higher-order (t-order) masking can prevent higher-order
(t-order) SCA

● t-order masking:

○ Sensitive value splits into (t+1) shares

○ Perform all operations on each share separately

● Attack model:

○ Adversary can see up to t intermediate sensitive values

4

s

s
0

s
1

s
t

Arithmetic masking used for arithmetic operations

 Useful for arithmetic operations:

● modular addition,

● modular subtraction,

● modular multiplication

5

s

s
0

s
1

s
t

(t+1) shares

s s
0s

tΣ mod q

Boolean masking used for bitwise operations

 Useful for Boolean operations:

● xor

● and

● or

● shift

6

s

s
0

s
1

s
t

(t+1) shares

s s
0s

t⨁

Goals

● Side-channel secure post-quantum MLWE/MLWR based KEM

○ Saber: MLWR based KEM (3rd round finalist)

● Generalized masked implementation

● Parameterized security order

7

and random

and indistinguishable

Challenges
● MLWE/MLWR based constructions uses arithmetic and Boolean operations

● Conversion algorithms are expensive

● Masked polynomial comparison

○ Easy for first-order

○ Costly for higher-order

8

Saber is a Key-encapsulation mechanism
● Based on module learning with rounding (MLWR) problem

○ Variant of learning with errors (LWE) problem

● NIST 3rd-round finalist

● Algorithms: Key-Generation, Encapsulation, and Decapsulation

● CCA secure KEM

○ Same secret-key used for multiple Decapsulation

9

Decapsulation is SCA sensitive operation of Saber

10

Decapsulation algorithm of Saber

~

~

Arithmetic masked operations of Saber is represented
with color blue

11

Arithmetic masking

~

~

Decapsulation algorithm of Saber

Addition and multiplication operations are duplicates for
each shares
Addition

● z = x + y
● x = x0+ x1+ … +xt
● When y is not masked

○ z0 = x0+ y
○ zi = xi ∀ i = 1, …, t
○ z = z0+ z1 + … + zt

12

Addition and multiplication operations are duplicates for
each shares
Addition

● z = x + y
● x = x0+ x1+ … +xt
● When y is not masked

○ z0 = x0+ y
○ zi = xi ∀ i = 1, …, t
○ z = z0+ z1 + … + zt

● When y is masked
● y = y0 + y1 + … + yt
● zi = xi + yi ∀ i = 0, …, t
● z = z0+ z1 + … + zt

13

Addition and multiplication operations are duplicates for
each shares
Addition

● z = x + y
● x = x0+ x1+ … +xt
● When y is not masked

○ z0 = x0+ y
○ zi = xi ∀ i = 1, …, t
○ z = z0+ z1 + … + zt

● When y is masked
● y = y0 + y1 + … + yt
● zi = xi + yi ∀ i = 0, …, t
● z = z0+ z1 + … + zt

14

Multiplication

● z = x . y
● Only one polynomial masked (x)
● x = x0+ x1+ … +xt

○ zi = xi . y ∀ i = 0, …, t
○ z = z0+ z1 + … + zt

Boolean masked operations of Saber is represented
with color Orange

15

Arithmetic masking

Boolean masking

~

~

Decapsulation algorithm of Saber

Masked Centered Binomial Distribution (𝛽𝜇) use both
making techniques
● Uses Boolean to

Arithmetic conversion

(B2A)

● B2A is one of the

costly operations

16

Arithmetic masking

Boolean masking

Both masking

~

~

A2B is needed to convert arithmetic shares to Boolean
shares

● Before shift we use

arithmetic to Boolean

conversion (A2B)

● A2B is another costly

operation

17

Arithmetic masking

Boolean masking

Both masking

A2B conversion

~

~

Implementation results of masked Saber are in the table

18

Platform: ARM Cortex-M4

Framework: PQM4 [1]

Compiled with: arm-none-eabi-gcc

Version: 9.2.1[1] PQM4: Post-quantum crypto library for the ARM Cortex-M4, Kannwischer, M.J., Rijneveld, J.,
Schwabe, P., Stoffelen, K., https://github.com/mupq/pqm4.

Saber Decapsulation Unmasked 1st-order 2nd-order 3rd-order

Performance
[k]CPU cycles

1,121 3,022 (2.69x) 5,567 (4.96x) 8,649 (7.71x)

Random bytes 0 12k 42k 91k

https://github.com/mupq/pqm4

Masked Saber perform better than masked Kyber

19

[1] Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to
lattice-based kems, Bronchain, O., Cassiers, G.,
https://eprint.iacr.org/2022/158.

Saber Ours

Kyber [1]

Performance (x1000 cpucycle)

https://eprint.iacr.org/2022/158

Masked uSaber perform even better than masked
Saber

20

[1] Bitslicing arithmetic/boolean masking
conversions for fun and profit with application to
lattice-based kems, Bronchain, O., Cassiers, G.,
https://eprint.iacr.org/2022/158.

uSaber Ours

Saber Ours

Kyber [1]

Performance (x1000 cpucycle)

https://eprint.iacr.org/2022/158

Decapsulation operation of Kyber is similar to Saber

21

Decapsulation algorithm of Kyber

A2B conversion algorithm [1]

Input : {xi }0≤i≤t such that x = ∑xi mod 2k

Output : {ci }0≤i≤t such that ⊕ci = ∑xi mod 2k

1. {yi }0≤i≤t/2← A2B ({xi}0≤i≤t/2)
2. {yi }0≤i≤t← Expand ({yi}0≤i≤t/2)
3. {zi }0≤i≤t/2← A2B ({xi}(t/2 +1)≤i≤t/2)
4. {zi }0≤i≤t← Expand ({zi}0≤i≤t/2)
5. {ci }0≤i≤t← SecAdd ({yi }0≤i≤t ,{zi }0≤i≤t)
6. return {ci }0≤i≤t

22

[1] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently masking binomial sampling at arbitrary orders for lattice
based crypto. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 534–564. Springer, Heidelberg,
April 2019.

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

23

x0 x1 x2 x3

c0 c1 c2 c3

Input

Output ⊕ci = ∑xi

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

24

x0 x1 x2 x3

x0 x1 x2 x3

c0 c1 c2 c3

Split

Input

Output ⊕ci = ∑xi

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

25

x0 x1 x2 x3

x0 x1 x2 x3

c0 c1 c2 c3

Split

Input

Output ⊕ci = ∑xi

A2B

x0 x1

x0 x1

y’0 y’1 z’0 z’1

Split

Expand

c’0 c’1

SecAdd

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

26

x0 x1 x2 x3

x0 x1 x2 x3

c0 c1 c2 c3

Split

Input

Output ⊕ci = ∑xi

A2B

x0 x1

x0 x1

y’0 y’1 z’0 z’1

Split

Expand

c’0 c’1

SecAdd

Expand

x0 y’0 y’1= ⨁

x1 z’0 z’1= ⨁

(x0 + x1)

(z’0 z’1)⨁(y’0 y’1)⨁ +

mod 2k

=mod 2k

c’0 c’1⨁=

SecAdd

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

27

x0 x1 x2 x3

x0 x1 x2 x3

y0 y1 y2 y3 z0 z1 z2 z3

c0 c1 c2 c3

Expand

Split

Input

Output ⊕ci = ∑xi

A2B

x0 x1

x0 x1

y’0 y’1 z’0 z’1

Split

Expand

c’0 c’1

SecAdd

Expand

x0 y’0 y’1= ⨁

x1 z’0 z’1= ⨁

(x0 + x1)

(z’0 z’1)⨁(y’0 y’1)⨁ +

mod 2k

=mod 2k

c’0 c’1⨁=

SecAdd

Steps of A2B conversion algorithm
Input : {xi }0≤i≤3 such that x = ∑xi mod 2k

Output : {ci }0≤i≤3 such that ⊕ci = ∑xi

28

x0 x1 x2 x3

x0 x1 x2 x3

y0 y1 y2 y3 z0 z1 z2 z3

c0 c1 c2 c3

Expand

SecAdd

Split

Input

Output ⊕ci = ∑xi

A2B

x0 x1

x0 x1

y’0 y’1 z’0 z’1

Split

Expand

c’0 c’1

SecAdd

Expand

x0 y’0 y’1= ⨁

x1 z’0 z’1= ⨁

(x0 + x1)

(z’0 z’1)⨁(y’0 y’1)⨁ +

mod 2k

=mod 2k

c’0 c’1⨁=

SecAdd

Compression operation in Saber is just shift operation

Input : {xi }0≤i≤t such that x = ∑xi mod 2k

Output : {mi }0≤i≤t such that ⊕mi = MSB(∑xi mod 2k)

1. {ci }0≤i≤t ← A2B ({xi}0≤i≤t)
2. {mi }0≤i≤t← MSB ({ci}0≤i≤t/2)
3. return {mi }0≤i≤t

29

Compression operation in Kyber has lot more steps
than Saber

Input : {xi }0≤i≤t such that x = ∑xi mod q
Output : {mi }0≤i≤t such that ⊕mi = Compression(∑xi mod q)

1. x0 ← x0 - ⌊q/4⌋
2. {yi }0≤i≤t ← transform-power-of-2 ({xi}0≤i≤t, 13)
3. y0 ← y0 - ⌊q/2⌋
4. {ci }0≤i≤t ← A2B ({yi}0≤i≤t)
5. {mi }0≤i≤t← MSB ({ci}0≤i≤t/2)
6. return {mi }0≤i≤t

30

Future works
● Masking friendly post-quantum schemes

● Improve the performances of masking building block

● Reduce random bytes requirements in masked scheme

31

Thank you!

Suparna Kundu, Jan-Pieter D’Anvers, Michiel Van
Beirendonck, Angshuman Karmakar, Ingrid Verbauwhede
“Higher-order masked Saber”. SCN 2022.

Publication:

