KULEUVEN

Masking Lattice-based Post-quantum Cryptography

Suparna Kundu
imec-COSIC, KU Leuven
SAFEST 2023

Side-channel attacks (SCA) exploits implementation flaws

- Power consumption
- Electromagnetic radiation
- Timing information

Leak sensitive information

Masking is a countermeasure of SCA

Higher-order (t-order) masking can prevent higher-order (t-order) SCA

- t-order masking:
- Sensitive value splits into (t+1) shares
- Perform all operations on each share separately

- Attack model:
- Adversary can see up to t intermediate sensitive values

Arithmetic masking used for arithmetic operations

Useful for arithmetic operations:

- modular addition,
- modular subtraction,
- modular multiplication

Boolean masking used for bitwise operations

Useful for Boolean operations:

- xor
- and
- or
- shift

Goals

- Side-channel secure post-quantum MLWE/MLWR based KEM
- Saber: MLWR based KEM (3rd round finalist)

$$
\lfloor A \cdot \mathbf{s}\rceil=\mathbf{b} \quad \text { and } \quad \mathbf{b}^{\prime} \text { random }
$$

\mathbf{b}^{\prime} and \mathbf{b} indistinguishable

- Generalized masked implementation
- Parameterized security order

Challenges

- MLWE/MLWR based constructions uses arithmetic and Boolean operations
- Conversion algorithms are expensive
- Masked polynomial comparison
- Easy for first-order
- Costly for higher-order

Saber is a Key-encapsulation mechanism

- Based on module learning with rounding (MLWR) problem $\quad\lfloor A \cdot \mathbf{s}\rceil=\mathbf{b}$
- Variant of learning with errors (LWE) problem $A \cdot \mathbf{s}+\mathbf{e}=\mathbf{b}$
- NIST 3rd-round finalist
- Algorithms: Key-Generation, Encapsulation, and Decapsulation
- CCA secure KEM
- Same secret-key used for multiple Decapsulation

Decapsulation is SCA sensitive operation of Saber

Decapsulation algorithm of Saber

Arithmetic masked operations of Saber is represented with color blue

Decapsulation algorithm of Saber
Arithmetic masking

Addition and multiplication operations are duplicates for each shares

Addition

- $z=x+y$
- $\mathrm{x}=\mathrm{x}_{0}+\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{t}}$
- When y is not masked
- $z_{0}=x_{0}+y$
- $z_{i}=x_{i} \quad \forall i=1, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$

Addition and multiplication operations are duplicates for each shares

Addition

- $z=x+y$
- $\mathrm{x}=\mathrm{x}_{0}+\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{t}}$
- When y is not masked
- $z_{0}=x_{0}+y$
- $z_{i}=x_{i} \quad \forall i=1, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$
- When y is masked
- $y=y_{0}+y_{1}+\ldots+y_{t}$
- $z_{i}=x_{i}+y_{i} \forall i=0, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$

Addition and multiplication operations are duplicates for each shares

Addition

- $z=x+y$
- $\mathrm{x}=\mathrm{x}_{0}+\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{t}}$
- When y is not masked
- $z_{0}=x_{0}+y$
- $z_{i}=x_{i} \quad \forall i=1, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$
- When y is masked
- $y=y_{0}+y_{1}+\ldots+y_{t}$
- $z_{i}=x_{i}+y_{i} \forall i=0, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$

Multiplication

- $z=x . y$
- Only one polynomial masked (x)
- $\mathrm{x}=\mathrm{x}_{0}+\mathrm{x}_{1}+\ldots+\mathrm{x}_{\mathrm{t}}$
- $z_{i}=x_{i} \cdot y \quad \forall i=0, \ldots, t$
- $z=z_{0}+z_{1}+\ldots+z_{t}$

Boolean masked operations of Saber is represented with color Orange

Masked Centered Binomial Distribution $(\beta \mu)$ use both making techniques

- Uses Boolean to Arithmetic conversion (B2A)
- B2A is one of the costly operations

Arithmetic masking
Boolean masking
Both masking

A2B is needed to convert arithmetic shares to Boolean shares

- Before shift we use arithmetic to Boolean conversion (A2B)
- A2B is another costly operation

Arithmetic masking
Boolean masking
Both masking
A2B conversion

Implementation results of masked Saber are in the table

Saber Decapsulation	Unmasked	1st-order	2nd-order	3rd-order
Performance $[\mathrm{k}] C P U$ cycles	1,121	$3,022(2.69 \mathrm{x})$	$5,567(4.96 \mathrm{x})$	$8,649(7.71 \mathrm{x})$
Random bytes	0	12 k	42 k	91 k

Platform: ARM Cortex-M4

Framework: PQM4 [1]
Compiled with: arm-none-eabi-gcc
Version: 9.2.1 Schwabe, P., Stoffelen, K., https://github.com/mupg/pgm4.

Masked Saber perform better than masked Kyber

[1] Bitslicing arithmetic/boolean masking conversions for fun and profit with application to lattice-based kems, Bronchain, O., Cassiers, G., https://eprint.iacr.org/2022/158.

Masked uSaber perform even better than masked Saber

uSaber	Ours
Saber	Ours
Kyber	$[1]$

Performance (x1000 cpucycle)

Decapsulation operation of Kyber is similar to Saber

Decapsulation algorithm of Kyber

A2B conversion algorithm [1]

Input : $\left\{x_{i}\right\}_{0 \leq i \leq t}$ such that $x=\sum x_{i} \bmod 2^{k}$
Output : $\left\{\mathrm{c}_{\mathrm{i}}\right\}_{0 \leq i \leq t}$ such that $\oplus \mathrm{C}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$

1. $\left\{y_{i}\right\}_{0 \leq i \leq t / 2} \leftarrow A 2 B\left(\left\{x_{i}\right\}_{0 \leq i s t / 2}\right)$
2. $\left\{y_{i}\right\}_{0 \leq i s t} \leftarrow$ Expand $\left(\left\{y_{i}\right\}_{0 \leq i s t / 2}\right)$
3. $\left.\left\{z_{i}\right\}_{0 \leq i s t / 2} \leftarrow \mathrm{~A} 2 \mathrm{~B}\left(\left\{\mathrm{x}_{\mathrm{i}}\right\}_{(\mathrm{t} / 2}+1\right) \leq \mathrm{sist/2}\right)$
4. $\left\{z_{\mathrm{i}}\right\}_{0 \leq i s t} \leftarrow$ Expand $\left(\left\{z_{\mathrm{i}}\right\}_{0 \leq i s t / 2}\right)$
5. $\left\{\mathrm{c}_{\mathrm{i}}\right\}_{0 \leq i \leq t} \leftarrow \operatorname{Sec} A d d\left(\left\{y_{i}\right\}_{0 \leq i \leq t},\left\{z_{i}\right\}_{0 \leq i s t}\right)$
6. return $\left\{c_{i}\right\}_{0 \leq i s t}$
[1] Tobias Schneider, Clara Paglialonga, Tobias Oder, and Tim Güneysu. Efficiently masking binomial sampling at arbitrary orders for lattice based crypto. In Dongdai Lin and Kazue Sako, editors, PKC 2019, Part II, volume 11443 of LNCS, pages 534-564. Springer, Heidelberg, April 2019.

Steps of A2B conversion algorithm

Input : $\left\{x_{\mathrm{i}}\right\}_{0 \leq i \leq 3}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$
Output: $\left\{c_{i}\right\}_{0 \leq i \leq 3}$ such that $\oplus c_{i}=\sum x_{i}$

Input	x_{0}	x_{1}	x_{2}

| c_{0} | c_{1} | c_{2} | c_{3} |
| :--- | :--- | :--- | :--- |$\quad{ }_{\mathrm{C}} \mathrm{C}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}}$

Steps of A2B conversion algorithm

Input : $\left\{x_{\mathrm{i}}\right\}_{0 \leq i \leq 3}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$
Output: $\left\{c_{i}\right\}_{0 \leq i \leq 3}$ such that $\oplus c_{i}=\sum x_{i}$

| c_{0} | c_{1} | c_{2} | c_{3} |
| :--- | :--- | :--- | :--- |$\quad{ }_{\mathrm{C}} \mathrm{C}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}}$

Steps of A2B conversion algorithm

Input : $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{0 \leq \leq \leq 3}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$
Output: $\left\{c_{i}\right\}_{0 \leq i \leq 3}$ such that $\oplus c_{i}=\sum x_{i}$

Steps of A2B conversion algorithm

Input : $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{0 \leq \leq \leq 3}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$
Output: $\left\{\mathrm{c}_{\mathrm{i}}\right\}_{0 \leq i \leq 3}$ such that $\oplus \mathrm{c}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}}$
Output

$$
\begin{array}{l|l|l|l|}
\mathrm{c}_{0} & \mathrm{c}_{1} & \mathrm{c}_{2} & \mathrm{c}_{3} \\
\hline
\end{array} \quad \oplus \mathrm{c}_{\mathrm{i}}=\sum \mathrm{x}_{\mathrm{i}}
$$

Expand

$$
\begin{aligned}
& x_{0}=y_{0}^{\prime} \oplus y_{1}^{\prime} \\
& x_{1}=z_{0}^{\prime} \oplus z_{1}^{\prime}
\end{aligned}
$$

SecAdd
$\left(x_{0}+x_{1}\right) \bmod 2^{k}=$
$\left(y_{0}^{\prime} \oplus \quad y^{\prime}{ }_{1}\right)+\left(z_{0}^{\prime} \oplus \quad z^{\prime}{ }_{1}\right)$
$\bmod 2^{k}$

$$
\begin{array}{|l|l|}
\hline \mathrm{c}_{0}^{\prime} & \mathrm{c}_{1}^{\prime} \\
\hline
\end{array} \quad=\quad \mathrm{c}_{0}^{\prime} \quad \oplus \quad \mathrm{c}_{1}^{\prime}
$$

Steps of A2B conversion algorithm

Input : $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{0 \leq \leq \leq 3}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod 2^{\mathrm{k}}$
Output: $\left\{c_{i}\right\}_{0 \leq i \leq 3}$ such that $\oplus c_{i}=\sum x_{i}$

Expand

$$
\begin{aligned}
& x_{0}=y_{0}^{\prime} \oplus y_{1}^{\prime} \\
& x_{1}=z_{0}^{\prime} \oplus z_{1}^{\prime}
\end{aligned}
$$

SecAdd
$\left(x_{0}+x_{1}\right) \bmod 2^{k}=$

$$
\left(y_{0}^{\prime} \oplus \quad y_{1}^{\prime}\right)+\left(z_{0}^{\prime} \oplus \quad z_{1}^{\prime}\right)
$$

$\bmod 2^{k}$

Steps of A2B conversion algorithm

Input : $\left\{x_{i}\right\}_{0 \leq i \leq 3}$ such that $x=\sum x_{i} \bmod 2^{k}$
Output: $\left\{c_{i}\right\}_{0 \leq i \leq 3}$ such that $\oplus c_{i}=\sum x_{i}$

Expand

$$
\begin{aligned}
& x_{0}=y_{0}^{\prime} \oplus y_{1}^{\prime} \\
& x_{1}=z_{0}^{\prime} \oplus z_{1}^{\prime}
\end{aligned}
$$

SecAdd
$\left(x_{0}+x_{1}\right) \bmod 2^{k}=$
$\left(y_{0}^{\prime} \oplus \quad y^{\prime}{ }_{1}\right)+\left(z_{0}^{\prime} \oplus \quad z^{\prime}{ }_{1}\right)$
$\bmod 2^{k}$

Compression operation in Saber is just shift operation

Input : $\left\{x_{i}\right\}_{0 \leq i \leq t}$ such that $x=\sum x_{i} \bmod 2^{k}$
Output: $\left\{m_{i}\right\}_{0 \leq i \leq t}$ such that $\oplus m_{i}=\operatorname{MSB}\left(\sum x_{i} \bmod 2^{k}\right)$

1. $\left\{c_{i}\right\}_{0 \leq i s t} \leftarrow A 2 B\left(\left\{x_{i}\right\}_{0 \leq i s t}\right)$
2. $\left\{m_{i}\right\}_{0 \leq i s t} \leftarrow \operatorname{MSB}\left(\left\{c_{i}\right\}_{0 \leq i s t / 2}\right)$
3. return $\left\{m_{i}\right\}_{0 \leq i s t}$

Compression operation in Kyber has lot more steps than Saber

Input : $\left\{\mathrm{x}_{\mathrm{i}}\right\}_{0 \leq i \leq t}$ such that $\mathrm{x}=\sum \mathrm{x}_{\mathrm{i}} \bmod \mathrm{q}$
Output: $\left\{m_{i}\right\}_{0 \leq i s t}$ such that $\oplus m_{i}=$ Compression $\left(\sum x_{i} \operatorname{modq}\right)$

1. $x_{0} \leftarrow x_{0}-\lfloor q / 4\rfloor$
2. $\left\{y_{i}\right\}_{0 \leq i \leq t} \leftarrow$ transform-power-of-2 $\left(\left\{x_{i}\right\}_{0 \leq i \leq t t^{\prime}} 13\right)$
3. $\mathrm{y}_{0} \leftarrow \mathrm{y}_{0}-\lfloor\mathrm{q} / 2\rfloor$
4. $\left\{\mathrm{c}_{\mathrm{i}}\right\}_{0 \leq i \leq \mathrm{t}} \leftarrow \mathrm{A} 2 \mathrm{~B}\left(\left\{\mathrm{y}_{\mathrm{i}}\right\}_{0 \leq i \leq \mathrm{t}}\right)$
5. $\left\{m_{i}\right\}_{0 \leq i s t} \leftarrow M S B\left(\left\{c_{i}\right\}_{0 \leq i s t / 2}\right)$
6. return $\left\{m_{i}\right\}_{0 \leq i \leq t}$

Future works

- Masking friendly post-quantum schemes
- Improve the performances of masking building block
- Reduce random bytes requirements in masked scheme

Publication:

Suparna Kundu, Jan-Pieter D'Anvers, Michiel Van Beirendonck, Angshuman Karmakar, Ingrid Verbauwhede "Higher-order masked Saber". SCN 2022.

Thank you!

