A Novel Structural Attack Against SAT-Resilient Logic Locking Techniques

Levent Aksoy⁺, Muhammad Yasin[‡] and Samuel Pagliarini⁺ [†]Tallinn University of Technology, Tallinn, Estonia [‡]National University of Sciences and Technology, Islamabad, Pakistan

SAFEST Workshop, Tallinn, Estonia, 19th of June 2023

Outline

- Introduction
- Background
- Proposed Attack
- Experimental Results
- Conclusions

Introduction

• Many security threats have been causing damages to the semiconductor industry

• Against such threats, many efficient methods have been introduced

Introduction

- Logic locking is a promising solution to a wide range of security threats
 - adds additional gates into the original design with key bits

- Pre-SAT locking techniques
 - focus on output corruption and hardware complexity
 - random logic locking (RLL) [1]
- SAT-based attack [2]
 - iteratively finds distinguishing input patterns (DIPs) that eliminate wrong key(s)
- Post-SAT locking techniques
 - increase the run-time of an iteration and the number of iterations
 - SARLock [3], Anti-SAT [4], CAS-Lock [5], Gen-Anti-SAT [6], TTLock [7], SFLL-REM [8], and CAC [9]

[8] A. Sengupta, M. Nabeel, N. Limaye, M. Ashraf, and O. Sinanoglu, "Truly Stripping Functionality for Logic Locking: A Fault-Based Perspective," IEEE TCAD, vol. 39, no. 12, pp. 4439–4452, 2020.

^[1] J. A. Roy, F. Koushanfar and I. L. Markov, "Ending Piracy of Integrated Circuits," in DATE, pp. 1069-1074, 2008.

^[2] P. Subramanyan, S. Ray and S. Malik, "Evaluating the Security of Logic Encryption Algorithms," in HOST, pp. 137-143, 2015.

^[3] M. Yasin, B. Mazumdar, J. Rajendran, and O. Sinanoglu, "SARLock: SAT Attack Resistant Logic Locking," in HOST, 2016, pp. 236–241.

^[4] Y. Xie and A. Srivastava, "Anti-SAT: Mitigating SAT Attack on Logic Locking," IEEE TCAD, vol. 38, no. 2, pp. 199–207, 2019.

^[5] B. Shakya, X. Xu, M. Tehranipoor and D. Forte, Domenic, "CAS-Lock: A Security-Corruptibility Trade-off Resilient Logic Locking Scheme," IACR TCHES, vol. 2020, no. 1, 175-202, 2019.

^[6] J. Zhou and X. Zhang, "Generalized SAT-Attack-Resistant Logic Locking," IEEE TIFS, vol. 16, pp. 2581–2592, 2021.

^[7] M. Yasin, A. Sengupta, M. T. Nabeel, M. Ashraf, J. V. Rajendran, and O. Sinanoglu," Provably-Secure Logic Locking: From Theory To Practice," in CCS, pp. 1601-1618, 2017.

^[9] K. Shamsi, T. Meade, M. Li, D. Z. Pan, and Y. Jin, "On the Approximation Resiliency of Logic Locking and IC Camouflaging Schemes," IEEE TIFS, vol. 14, no. 2, pp. 347–359, 2019.

	One-point Function										
Х ₃	x ₂	x ₁	K ⁷	K ⁶	K ⁵	K ⁴	K ³	K ²	K1	K ⁰	
0	0	0	0	0	0	0	0	0	0	1	
0	0	1	0	0	0	0	0	0	1	0	
0	1	0	0	0	0	0	0	1	0	0	
0	1	1	0	0	0	0	1	0	0	0	
1	0	0	0	0	0	0	0	0	0	0	
1	0	1	0	0	1	0	0	0	0	0	
1	1	0	0	1	0	0	0	0	0	0	
1	1	1	1	0	0	0	0	0	0	0	

 $\mathsf{K}^{\mathsf{i}} = \mathsf{k}_3 \mathsf{k}_2 \mathsf{k}_1 = \mathsf{(i)}_{\mathsf{bin'}} \ \mathsf{0} \leq \mathsf{i} \leq \mathsf{7}$

Single Flip Locking Techniques (SFLTs) [3-6]

Double Flip Locking Techniques (DFLTs) [7-9]

7

- A Boolean logic function, $\varphi: B^n \to B$, where B = {0,1} over *n* variables $x_1, ..., x_n$
 - maps each truth assignment to 0 or 1
- The logic function ϕ in the conjunctive normal form (CNF)
 - is a *conjunction* of clauses, $c_1, ..., c_m$, where a clause is a *disjunction* of literals $c_i = l_1 + l_2 + ... l_j$, $i \le m, j \le n$, where a literal is either a variable or its complement
 - $\varphi = (x_1 + x_2 + \overline{x_3})(\overline{x_1} + x_3)(\overline{x_2} + x_3)$
- The satisfiability (SAT) problem
 - is to find an assignment to the variables of a Boolean function ϕ in CNF that makes ϕ to be equal to 1 or prove that ϕ is equal to 0
 - ϕ is *satisfiable* with $x_3x_2x_1 = 111$
- The quantified Boolean formula (QBF) problem
 - is the generalization of the SAT problem including existential (\exists) and universal (\forall) quantifiers

The Proposed Attack

Logic Removal and Key Logic Extraction

Majority Circuit Locked by TTLock [7]	Restore Unit	Unit-Stripped Circuit	PPI-K Relation	QBF
			$x_1 - k_1$	$\exists k_1 k_2 k_3, \forall x_1 x_2 x_3, cs_1 = 1$
$X_3 \longrightarrow f$	x_3 b cs_1	X3	$x_2 - k_3$ $x_3 - k_2$	No Solution
	X2 <u>k</u> 3			$\exists k_1 k_2 k_3, \forall x_1 x_2 x_3, cs_1 = 0$
\mathbf{x}_{2}	Compares PPI and K			No Solution

10

Structural Analysis and Exhaustive Search

X ₃	x ₂	x ₁	f _{org}	f _{FSC}	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	1	1	1	
1	1	0	1	1	
1	1	1	1	1	

Logic Cones
X_1 X_2 X_3 Ico_1
X1 ICO2

Possible Set of PPI Values								
$lco_1(x_3, x_2, x_1) = 0$ $lco_2(x_2, x_1) = 0$								
$x_3 x_2 x_1 = 000$	$x_3 x_2 x_1 = X00$							
$lco_1(x_3, x_2, x_1) = 1$	$lco_2(x_2, x_1) = 1$							
$x_3 x_2 x_1 = 100$	$x_{3}x_{2}x_{1} = X11$							

Exhaustive Search							
f _{org} (x ₃ , x ₂ ,	$x_1) \stackrel{?}{=} f(x_3, x_2, x_1, k_3, k_2, k_1)$						
$x_1 - k_1$	$f_{ORG}(1,0,0) = f(1,0,0,0,1,0)$						
$x_{2} - k_{3}$ $x_{3} - k_{2}$	$k_{3}k_{2}k_{1}=010$						

Circuit Modification and OL Attack

- For SFLTs, the locking unit is targeted
 - if each PPI is associated with double key inputs, e.g., Anti-SAT versions [6]
 - set PPIs to a constant logic value, e.g., 0
- For DFLTs, the encrypted circuit is targeted
 - replace the PPIs by associated key inputs
- Run SCOPE [10] on the target circuit and obtain the solution

- Our tool KRATT was run on ISCAS'85, ITC'99, and HeLLO: CTF'22 circuits locked by
 - SFLTs including SARLock [3], Anti-SAT [4], CAS-Lock [5], and Gen-Anti-SAT [6]
 - DFLTs including TTLock [7] and CAC [9]
- It was compared to
 - OL attack SCOPE [10] and
 - OG attacks, SAT-based [2], Double DIP (DDIP) [11], and approximate SAT (AppSAT) [12]
- KRATT was developed in Perl and equipped with
 - QBF solver DepQBF [13]
 - its run-time was set to 60 seconds
 - SAT solver cryptominisat [14]
- The attacks were run on a computing server including 32 Intel Xeon processing units at 3.9 GHz with 128 GB memory

^[11] Y. Shen and H. Zhou, "Double DIP: Re-Evaluating Security of Logic Encryption Algorithms," in GLSVLSI, 2017, pp. 179–184.

^[12] K. Shamsi, M. Li, T. Meade, Z. Zhao, D. Z. Pan, and Y. Jin, "AppSAT: Approximately Deobfuscating Integrated Circuits," in HOST, 2017, pp. 95–100.

^[13] Florian Lonsing. DepQBF Solver. [Online]. Available: <u>https://github.com/lonsing/depqbf</u>

^[14] Mate Soos. Cryptominisat SAT Solver. [Online]. Available: https://github.com/msoos/cryptominisat

First Experiment Set –	ISCAS'85 and ITC'9	Benchmarks
------------------------	--------------------	------------

Circuit	#inputs	#outputs	#gates	#key inputs
c2670	157	64	1193	64
c5315	178	123	2307	64
c6288	32	32	2416	32
b14_C	277	299	9768	128
b15_C	485	519	8367	128
b20_C	522	512	19683	128

Results of OL Attacks on Locked Circuits

	SFLT						DFLT									
Circuit		Ant	ti-SAT			SARL	ock		CAC			TTLock				
Circuit	SCO	PE	KRAT	Т	SCOP	Έ	KRAT	т	SCO	PE	KRA	тт	SCO	PE	KRA	ГТ
	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU	cdk/dk	CPU
c2670	13/23	3.1	64/64	0.3	64/64	3.3	64/64	0.3	17/26	3.2	33/64	64.4	14/26	3.1	34/64	64.3
c5315	13/22	3.9	64/64	0.6	64/64	3.9	64/64	0.5	12/19	3.9	33/64	64.6	16/31	4.0	34/64	64.5
c6288	7/12	2.2	32/32	0.6	32/32	2.4	32/32	0.7	11/18	2.2	18/32	64.0	9/14	2.2	20/32	63.0
b14_C	32/55	15.1	128/128	4.6	128/128	15.5	128/128	10.1	39/71	15.0	67/128	74.6	35/59	14.8	70/128	74.4
b15_C	22/38	20.0	128/128	9.0	128/128	20.4	128/128	11.9	18/35	21.4	64/128	79.5	43/70	20.2	68/128	78.7
b20_C	24/46	25.8	128/128	13.6	128/128	26.2	128/128	16.9	30/54	26.1	58/102	79.3	24/46	26.1	68/128	82.3

Results of OG Attacks on Locked Circuits

	SFLT						DFLT									
Circuit		А	nti-SAT			SA	RLock			C	CAC			TT	Lock	
	SAT	DDIP	AppSAT	KRATT	SAT	DDIP	AppSAT	KRATT	SAT	DDIP	AppSAT	KRATT	SAT	DDIP	AppSAT	KRATT
c2670	ОоТ	OoT	OoT	0.3	OoT	OoT	OoT	0.3	OoT	ОоТ	OoT	70.7	OoT	OoT	ОоТ	70.5
c5315	OoT	OoT	ОоТ	0.6	OoT	OoT	OoT	0.4	OoT	ОоТ	OoT	73.3	OoT	ОоТ	OoT	75.9
c6288	ОоТ	OoT	ОоТ	0.6	OoT	OoT	OoT	0.7	OoT	ОоТ	OoT	163.1	OoT	ОоТ	ОоТ	161.2
b14_C	OoT	OoT	ОоТ	4.5	OoT	OoT	ОоТ	10.7	OoT	OoT	OoT	114.9	OoT	OoT	OoT	112.8
b15_C	ОоТ	OoT	ОоТ	9.1	OoT	OoT	OoT	11.9	OoT	ОоТ	OoT	133.3	OoT	ОоТ	OoT	131.6
b20_C	OoT	OoT	ОоТ	13.7	OoT	OoT	ОоТ	16.9	OoT	OoT	OoT	128.0	OoT	OoT	OoT	138.7

Impact of #Key Inputs on Run-Time of KRATT

- Second experiment set [15]
 - six ITC'99 circuits locked by SARLock, Anti-SAT, CAS-Lock, Gen-Anti-SAT, TTLock, and CAC using 128 key inputs
 - each benchmark has 10 synthesized circuits
 - a total of 360 locked circuits
- KRATT found the secret key of designs locked by SFLTs and DFLTs under the OL and OG threat model, respectively

Circuit	SCO	PE	KRATT			
Circuit	cdk/dk	CPU	cdk/dk	CPU		
b14_C	9/12	14.3	127/127	106.3		
b15_C	0/0	19.5	128/128	137.2		
b17_C	0/0	51.5	128/128	533.5		
b20_C	4/4	25.0	128/128	170.2		
b21_C	0/0	24.8	128/128	173.4		
b22_C	0/0	34.4	128/128	261.9		

Results of OL Attacks on Circuits Locked by Gen-Anti-SAT

[15] Satwik Patnaik. Valkyrie. [Online]. Available: <u>https://github.com/LL-Tools/Valkyrie</u>

Third	Expe	riment	Set –	HeLLC): C	TF'22
-------	------	--------	-------	-------	------	-------

Circuit	#inputs	#outputs	#gates	#key inputs
final_v1	767	755	17144	87
final_v2	1452	1445	27440	47
final_v3	522	1	93	29

Results of OL and OG Attacks										
Circuit		OL At	OG Attacks							
	SCOPE		KRATT		ς ατ	VDATT				
	cdk/dk	CPU	cdk/dk	CPU	JAI	NNALL				
final_v1	0/0	261.9	73/87	194.6	1117.0	350.2				
final_v2	0/0	39.7	34/46	99.4	OoT	2186.5				
final v3	0/0	1.9	25/29	62.6	20448.6	63.9				

Conclusions

- This work presented a removal and structural analysis attack KRATT against SAT-resilient logic locking techniques
 - it uses a quantified Boolean formulation to find the secret key of SFLTs
 - it uses a structural analysis and exhaustive search method to find the secret key of DFLTs
 - it can successfully handle the locked circuits under the OL threat model
- In future work, we plan to
 - extend its capabilities to break other logic locking techniques
 - multi flip and compound
 - propose a defense mechanism that thwarts structural attacks

Questions

THANKS for YOUR ATTENTION

Contact: Levent Aksoy E-mail: levent.aksoy@taltech.ee